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RADIATION SLIP IN A HIGHLY POROUS MATERIAL LAYER 

N. V. Pavlyukevich UDC 536.3 

Expressions are obtained for the coefficient of radiant heat conductivity and 
the temperature jumps in the radiation slip mode in a highly porous material 
layer. 

The model of a dust-laden gas [i] is often used as the globular model of a porous body 
in the theory of transport processes in highly porous media. Its crux is that the highly 
porous body is simulated by a homogeneous system of spherical particles of identical radius 
r distributed randomly and fixed in space (see sketch). 

If the skeleton of such a porous body is opaque, while its material has the emissivity 
e, then radiation transport therein can be described on the basis of an integral equation 
for the radiation energy emanating from unit volume of the porous body per unit time [3]. 
Assumptions about the homogeneity of the medium and isotropy of the scattering as well as 
the approximations of a gray body a and the photon mean free path A were used in deriving 
this equation. The radiation wavelength should here be much less than both the sphere di- 
ameter and the spacing between them. 

The quantity A per unit volume equals [!] 

1--]7 
4 

- -  ~ r  3 

3 

where S = 

4/7 
A -  

S 

4~r2 - 3 ( l - - H )  
Y 

4 H 

3 1 - - / 7  
- -  T, 

is the surface of spheres of radius r. 

If A is considerably less than the thickness of the porous layer L (s = L/A >> i) and 
the effective heat Conductivity of the highly porous material is lowand can be neglectedthen, 
the radiation energy transfer process can be considered diffusion. Using the approximation 
of an optically thick layer [4], the radiation transfer should be described by the heat con- 
duction equation with radiant heat conductivity coefficient X R. 

We write the expression for the energy flux density of the intrinsic radiation qR in 
the section X in the form 

qn = 2a l" S S - -  exp d~d~-- 
o'o 4~ Ap, 
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Fig. i. GeOmetric diagram of the porous layer. 

-- 2~ ( C S oT~ (0 exp d~d~, (1) 
4~ A~ 

when deriving the relationship for 1 R in a highly porous body (by analogy with finding the 
diffusion coefficient in such a porous medium [5]) where D = cos e and 8 is the angle be- 
tween the x axis and the direction of photon motion. 

After integrating (i) with respect to ~ we obtain 

q R = - - ~ -  ~ A ~ x A 

1 

where E~ (9) = f ~-Zexp (--g/~) d ~  is  the  exponent ia l  i n t e g r a l  funct ion.  Assuming E2(y) = 

3 exp( 3 )  -$- --~-g , expanding the function T4(~) in a Taylor series in the neighborhood of the 

point $ = X and limiting ourselves to the first two terms, we have for inner points of the 
layer (X >> A) from (2) 

i.e., 

qR = - -  - -  
16 d T  64 H z d T  

I l  oTa A - -  - -  c, T a r 
3 d X  9 I - -  H d X  ' 

64 Nz 
s = ~ T  s ~ r. ( 3 )  

9 I--H 

Therefore, for the porous body model under consideration under the assumption of iso- 
tropy of the scattering, the radiant heat conductivity coefficient 1 R is proportional to 
H=/(I - H) and does not contain s. Let us note that the form of the expression for 1 R de- 
pends on the porous body model and the radiation transfer process therein [6, 7]. In par- 
ticular, it is shown in [6] for compact layers of spheres that if a two-flux approximation 
is used in the derivation of IR, then 1 R = 8oTS/(a + 2b) (a, b are the absorption and back- 
scattering coefficients, respectively). In application to the model being utilized here 
(with isotropic scattering, we can formally set a = s/A, b = i/2(i - e)/A). Thel R is also 
independent of e. 

As is known [4], in addition to the limit modes of optically thick and optically thin 
layers, the radiation slip mode associated with the deviation from the conditions of an op- 
tically thick layer at the boundaries of the medium, is also utilized in the theory of 
radiation transport. The temperature jumps on the interfacial boundaries under conditions 
of a non-heat-conducting medium are analogous in their nature to the temperature jumps in a 
rarefied gas [8]. In the simplest case their derivation is based on equilibrium of the sum 
of unilateral heat fluxes on the interfacial boundaries of the media to the resultant heat 
flux. Let us note that the concept of a unilateral flux is used when writing the condition 
on the boundary with a vacuum for the diffusion equation of neutron transport [9] and in 
the kinetic theory of gases. An expression is obtained in [I0] for the temperature jump of 
a gas at the surface of a porous body of capillary configuration. 
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Let us write the temperature jump conditions for a porous layer bounded on one side 
(X = 0) by a vacuum and on the other (X = L) by a continuous material whose emissivity 
equals e I (see Fig. i~. The expression for the unilateral radiant energy flux from the~ 
porous body to the surface X = L can be obtained from the first component in the right side 
of the relationship (2). Then, having performed the same calculations as in the derivation 
of iR, we find HoT 4 = (I/2)IR(3T/3x). The absorbed and emitted energy flux at the boundary 
X = L equal, respectively, el(HaT 4 - (I/2)lR(3T/3x)) and r where TI is the surface 
temperature of the continuous material. Consequently, the temperature jump condition at the 
boundary X = L takes the form 

or  

I . " OT\ OT 
HaI~T] ~R 

OX ' 

( 1  1 ) ~ R O T  I =I7~(T ~ T 4 
~1 2 " - ~ -  x=L -- 1)[x=L" (4) 

The t e m p e r a t u r e  jump c o n d i t i o n  i s  o b t a i n e d  i n  a n a l o g o u s  manner on t h e  b o u n d a r y  w i t h  t h e  
vacuum 

1 ~R--~OT I = 17(; (r~Ix=o -- T4 ), ( 5 ) 
2 x=o 

where T c is the temperature of the external medium. The derived boundary conditions (4) 
and (5) can be utilized in the formulation of boundary value problems of radiation-conduc- 
tive heat transfer in highly porous materials. 

NOTATION 

T is the temperature, 6 is the Stefan-Boltzmann constant; ~ is the porosity; L is the 
porous layer thickness; A is the photon mean free path; g, el are the emissivities of the 
porous and continuous materials and l R is the coefficient of radiant heat conductivity. 
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